References


1. S. Saeedvand, M. Jafari, H. S. Aghdasi, and J. Baltes, "A comprehensive survey on humanoid robot development," The Knowledge Engineering Review, vol. 34, e20, 2019. doi: 10.1017/S0269888919000158.
2. Y. Tong, H. Liu, and Z. Zhang, "Advancements in humanoid robots: A comprehensive review and future prospects," IEEE/CAA Journal of Automatica Sinica, vol. 11, no. 2, pp. 301–328, Feb. 2024. doi: 10.1109/JAS.2023.124140.
3. S. Feng, E. Whitman, X. Xinjilefu, and C. G. Atkeson, "Optimization based full body control for the atlas robot," 2014 IEEE-RAS International Conference on Humanoid Robots, Madrid, Spain, IEEE, Nov. 2014, pp. 120–127. doi: 10.1109/HUMANOIDS.2014.7041347.
4. M. S. Ahn, T. Zhu, and D. Hong, "Romela team description paper for robocup 2019 humanoid league."
5. M. Lambeta, P.-W. Chou, S. Tian, et al., "Digit: A novel design for a low-cost compact high-resolution tactile sensor with application to in-hand manipulation," IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 3838–3845, Jul. 2020. doi: 10.1109/LRA.2020.2977257.
6. H. Moravec, "Mind children: The future of robot and human intelligence," Harvard University Press, 1988, p. 15. ISBN: 0674576160.
7. M. Asada, H. Kitano, I. Noda, and M. Veloso, "Robocup: Today and tomorrow—what we have learned," Artificial Intelligence, vol. 110, no. 2, pp. 193–214, Jun. 1999. doi: 10.1016/S0004-3702(99)00024-7.
8. S. Tiomkin, I. Nemenman, D. Polani, and N. Tishby, "Intrinsic motivation in dynamical control systems," 2022, arXiv: 2301.00005 [cs.AI].
9. S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, "The 3D linear inverted pendulum mode: A simple modeling for a biped walking pattern generation," Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, 2001, pp. 239–246. doi: 10.1109/IROS.2001.973365.
10. Z. Aftab, T. Robert, and P.-B. Wieber, "Ankle, hip, and stepping strategies for humanoid balance recovery with a single model predictive control scheme," 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), 2012, pp. 159–164. doi: 10.1109/HUMANOIDS.2012.6651514.
11. L. Sentis and O. Khatib, "A whole-body control framework for humanoids operating in human environments," Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, pp. 2641–2648. doi: 10.1109/ROBOT.2006.1642100.
12. L. Legault, "Intrinsic and extrinsic motivation," Encyclopedia of Personality and Individual Differences, Nov. 2016. doi: 10.1007/978-3-319-28099-8_1139-1.
13. T. M. Cover and J. A. Thomas, ELEMENTS OF INFORMATION THEORY, Wiley-Interscience, Jul. 2006. ISBN: 978-0-471-24195-9.
14. R. W. Yeung, Information theory and network coding, Springer, 2008. ISBN: 978-0-387-79233-0.
15. M. A. Basthomi, A. H. Alasiry, A. Risnumawan, et al., "Walking balance control for humanoid soccer robot on synthetic grass," 2020 International Electronics Symposium (IES), Surabaya, Indonesia, IEEE, Sep. 2020, pp. 213–218. doi: 10.1109/IES50839.2020.9231879.
16. M.-J. Kim, D. Lim, G. Park, and J. Park, "A model predictive capture point control framework for robust humanoid balancing via ankle, hip, and stepping strategies," arXiv:2307.13243, Jul. 2023. doi: 10.48550/arXiv.2307.13243.
17. Y. Xie, J. Wang, H. Dong, X. Ren, L. Huang, and M. Zhao, "Dynamic balancing of humanoid robot with proprioceptive actuation: Systematic design of algorithm, software, and hardware," Micromachines, vol. 13, no. 99, p. 1458, Sep. 2022. doi: 10.3390/mi13091458.
18. J. Carpentier, G. Saurel, G. Buondonno, et al., "The pinocchio c++ library: A fast and flexible implementation of rigid body dynamics algorithms and their analytical derivatives," 2019 IEEE/SICE International Symposium on System Integration (SII), Paris, France, IEEE, Jan. 2019, pp. 614–619. doi: 10.1109/SII.2019.8700380.
19. M. Bestmann, J. Guldenstein, F. Vahl, and J. Zhang, "Wolfgang-op: A robust humanoid robot platform for research and competitions," 2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids), Munich, Germany, IEEE, Jul. 2021, pp. 90–97. doi: 10.1109/HUMANOIDS47582.2021.9555808.
20. D. Gouaillier, C. Collette, and C. Kilner, "Omni-directional closed-loop walk for nao," 2010 10th IEEE-RAS International Conference on Humanoid Robots, Nashville, TN, USA, IEEE, Dec. 2010, pp. 448–454. doi: 10.1109/ICHR.2010.5686291.
21. K. Hashimoto, "Mechanics of humanoid robot," Advanced Robotics, vol. 34, no. 21–22, pp. 1390–1397, Nov. 2020. doi: 10.1080/01691864.2020.1813624.
22. M. Penčić, M. Čavić, and B. Borovac, "Development of the low backlash planetary gearbox for humanoid robots," FME Transactions, vol. 45, pp. 122–129, Jan. 2017. doi: 10.5937/fmet1701122P.
23. S. Dai, W. Xu, A. Hofmann, and B. Williams, "An empowerment-based solution to robotic manipulation tasks with sparse rewards," Autonomous Robots, vol. 47, no. 5, pp. 617–633, Jun. 2023. doi: 10.1007/s10514-023-10087-8.